CONVERSION BETWEEN RATIONAL B-SPLINE AND
PARAMETRIC SPLINE REPRESENTATIONS

January 7, 1985

Prepared by:

Richard D. Fuhr

Boeing Commercial Airplane Company
PO Box 3707 M/S 6E-30

Seattle, WA 98124

M 7AA= I\~ VAN ~AAA I=7=7A A

THE BOEING COMPANY (BOEING) MAKES NO REPRESENTATION, WARRANTY,
OR GUARANTEE WHATSOEVER IN CONNECTION WITH THIS PROGRAM AND
RELATED MATERIALS (COLLECTIVELY, THE SOFTWARE), AND THE SOFTWARE IS
BEING MADE AVAILABLE TO ALL RECIPIENTS AND/OR USERS WITH THE
UNDERSTANDING THAT SUCH USERS WAIVE, RELEASE AND RENOUNCE ALL
WARRANTIES, OBLIGATIONS AND LIABILITIES OF BOEING AND ANY POSSIBLE
RIGHTS, CLAIMS AND REMEDIES OF THE USER AGAINST BOEING EXPRESS OR
IMPLIED, ARISING BY LAW OR OTHERWISE, WITH RESPECT TO ANY DEFECT IN
OR USE OF THE SOFTWARE INCLUDING, BUT NOT LIMITED TO, (A) ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,
(B) ANY IMPLIED WARRANTY ARISING FROM COURSE OF PERFORMANCE,
COURSE OF DEALING OR USAGE OF TRADE, (C) ANY OBLIGATION, LIABILITY,
RIGHT, CLAIM OR REMEDY ARISING IN TORT, WHETHER OR NOT ARISING FROM
BOEING’S NEGLIGENCE, ACTUAL OR IMPUTED, AND (D) ANY OBLIGATION,
LIABILITY, RIGHT, CLAIM OR REMEDY FOR LOSS OF USE, REVENUE OR PROFIT,
OR FOR ANY OTHER DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES.

M 7AA= N~ VAN ~AAA I=7=7A 1A

TABLE OF CONTENTS

Section Title Page
1.0 Introduction 4
2.0 Scope 5}
A Degree 5
B Dimension 5
C Rational 5
D Breakpoints and Knots 5
3.0 Examples 6
A Quiarter Circle 6
B Six-Segment Spline Curve 7
C Four-Patch Surface 11
4.0 General Methodology 13
A B-Spline to Parametric Spline 13
B Parametric Spline to B-Spline 13
C Extensions to the Rational Case 14
D Determination of Smoothness 14
5.0 Testing 16
A Evaluation and Comparison 16
B Repeated Conversions
C Examples 16
6.0 Implementation Considerations 17
A No Pointers 17
B No Indefinite Array Size 17
C Double Precision 17
D No Square Brackets for Arrays 17
E Control Structures 17
F Input/Output 18
G Other Non-Standard Features 18
7.0 Summary of Pascal Procedures Used 19

8.0 References 25

M 7AA= N~ VAN ~AAA I=7=7A 1A

1.0 INTRODUCTION

IGES (reference [4]) provides two different forms for representing spline curve and
surface entities. One form is the “parametric spline,” with entity type number 112 for curves
and 114 for surfaces. The other form is the “rational B-spline,” with entity type number 126 for
curves and 128 for surfaces. The Pascal code we have provided enables us to convert between
these two forms. In this paper, we give an overview of the underlying algorithms, together with
some examples.

Although IGES uses the term “parametric spline,” this is somewhat of a misnomer. The
rational B-spline entities are also parametric splines, so a better name for IGES entities 112 and
114 would be “power basis” curve and surface spline entities. In reference [2], deBoor uses the
term “piecewise polynomial” for such entities. In this paper we shall use the three terms
“parametric spline,” “piecewise polynomial” and “power basis spline” interchangeably.

The core of the code is, of course, the set of conversion algorithms. To support these, we
have provided the necessary mathematical and vector procedures. In addition, we have supplied
procedures to convert between rational forms and the corresponding homogeneous forms.

To supplement the code necessary for the actual conversion, we have also provided
procedures to run test cases and determine their accuracy. These include input/output and
comparison procedures as well as drivers for the whole process. A list of all the Pascal
procedures organized by category is provided in section 7 below. More detailed documentation
appears in the code itself.

M 7AA= I\~ \AIN ~AAA =77~ A

2.0 SCOPE
The spline data forms that we use are modifications of the corresponding IGES entities in
the following ways:

A. Degree. The IGES parametric spline entities have their degree fixed at 3, but the
degree in these data structures is arbitrary (up to a limit of 12). The IGES rational B-
spline entities are already of arbitrary degree.

B. Dimension. All the present IGES spline entities have coefficients with dimension
fixed at 3, but the dimension in these data structures is arbitrary (up to a limit of 6).

C. Rational. The IGES parametric spline entities are not rational, but the IGES rational
B-spline entities, of course, are. Therefore, we have extended the parametric spline entity
data structures here to make them rational, too.

D. Breakpoints and Knots. The IGES parametric spline entities provide for arbitrarily
many breakpoints, and the IGES rational B-spline entities provide for arbitrarily many
knots. However, in our implementation of the conversion algorithms we have had to set
on upper limit an the number of breakpoints and knots. The user can increase or decrease
these limits as he sees fit. Alternatively, he can reformulate the data structures using
dynamic variables.

N 7AA= I\~ \AIN ~AAA I=7=7A I

3.0 EXAMPLES

Before

going into details about the algorithms, we present several examples to establish

the notation and to illustrate the Pascal data structures.

Example A. Quarter Circle

Input (in rational B-Spline form)
degree =2

dim =2

number_of_knots = 6

knot(1) = knot(2) = knot(3) =0
knot(4) = knot(5) = knot(6) = 1
coeff(1) = (1,0) weight(1) =1
coeff(2) = (1,1) weight(2) =1
coeff(3) = (0,1) weight(3) = 2

This means that the quarter circle is parameterized by

C(t) =

1%(10)* by (t) +1*(11)* b, (t) +2*(01)*b, (1)

1%, (1) +1*D, (1) +2*Db, (1)

where by, b, and bs are the quadratic B-spline basis functions defined on the knot

sequence 0,0,0
curve.

,1,1,1. Thus, the parameter range is0 £ t £ 1, and this is a one-span B-spline

Output (in parametric spline form)
The equivalent parametric spline form representation to the above rational B-spline curve is

¥-t2

C@t) = g—f;

1+t

2t OO
1+tz<',

The corresponding Pascal record is as follows:

degree

dim

num_segs
break _point(1)
break_point(2)

N 7AA= I~

=2
=2
=1

=1

VAIN AAAI=7=IA I~

rpp_segment(1) is a rational polynomial whose coefficients are:

top_coeff(0) =(1,0)
top_coeff(1) =(0, 2)
top_coeff(2) =(-1,0)

bot_coeff(0) =1
bot_coeff(1) =0
bot_coeff(2) =1

(the const terms for x and y)
(the coeffs of t* for x and y)
(the coeffs of t* for x and y)

(the const term in denominator)
(the coeff of t* in denominator)
(the coeff of t* in denominator)

Example B. Six-Segment - Spline Curve

In this example, we have a six-segment non-rational parametric spline curve which
converts to a B-spline curve in which all possible knot multiplicity values occur.

Input: (See Fig. 1)

degree =3
dim =2

break points =-2,-1,0,1, 2, 3,4
global parameterisu,-2£ U £ 4

local parameter is s, defined for each segment

Segmentl: -2£u<-1, s=u-(-2)

X(s)=-2+s, y(s) =1
Segment2: -1£u<0, s=u-(-1)

X(s)=-1+s, y(s) =2
Segment3: O0£u<l, S=u

X(s) =s, y(s)=2+s
Segment4: 1£u<2, s=u-1

X(s)=1+s, y(s)=3+s+¢°
Segment5: 2£u<3, S=u-2

X(s) =2 +s, y(s)=5+3s+s+5°
Segment6: 3£uf4 s=u-3

N 7AA= I~

X(s) =3 +s5,

VAIN AAAI~=7A I

y(s) =10 + 8s + 45° + §°

Output (see Fig. 2)

Degree =3

Dimension =2

Knot Sequence:

KNOT VALUE MULTIPLICITY

-2 4
-1 4
0 3
1 2
2 1
3 0
4 4

B-Spline Coefficients (all weights = 1)
Coeff(1) = (-2, 1)
Coeff(2) =(-1%,1)
Coeff(3) =(-13, 1)
Coeff(4) = (-1, 1)
Coeff(5) = (-1, 2)
Coeff(6) = (-5, 2)
Coeff(7) = (-3, 2)
Coeff(8) = (0, 2)
Coeff(9) =(3,23)
Coeff(10) = (3, 2%)
Coeff(11) = (17, 33)
Coeff(12) = (27, 53)
Coeff(13) = (33, 103)
Coeff(14) = (4, 23)

Note the following characteristics of the knot sequence.

1) The start and end knots each have multiplicity = degree + 1.

2) For all interior knots, we have multiplicity = degree - k, where K is the level of derivative
continuity. Thus, at knot value u = 1, the function is C* continuous, so the knot multiplicity is 3
-1=2. Atknot value u = 3, the function is C* continuous, so the knot multiplicity is zero, i.e.,
the knot isn’t there at all, and on the interval [2, 4] the curve can be represented by a single
polynomial piece.

M 7AA= N~ VAN ~AAA I=7=7A 1N

[Figure 1. Input: A Piecewise Polynomial Curve]

B, R RN N NN
o N © © O B N W
| | | | | | | |
! ! ! ! ! ! ! !

=
= O
L1
1

2o
N ow
]
1

= e
o K
| |
| |

R N W M OO N ©
|
!

N 7AA= N~ VAN ~AAA I=7=7A 1N

[Figure 2. Output: A B-Spline Curve, With B-Spline Coefficients and Knot Multiplicities
Portrayed]

P RPN N NN
~N 00 © O B N W

[EY
»

=
~ o

B
N oW

=
o K

P N Wk~ OO N 00 ©

|
|
Knot -2 -1
Multi 4 4

w o1
N T
N
o w+t
N S

N 7AA= I\~ VAN AAAI=7=7A AN

Example C. Four-Patch Surface

In this example, we start out with a B-spline surface, convert it to a power basis
(parametric spline) representation, and convert it back to a B-spline surface. As we shall
see, it turns out that the second B-spline surface is simpler than the first, in that one of
the original knot values was not really necessary.

Surface #1%4 %% % ® Surface #2%,%,%, %, ® Surface #3
B-Spline Form Power Basis Form B-Spline Form

Surface #1 Defining Data
Degree in 1% Parameter = 2
Degree in 2" Parameter = 3
First Knot Sequence: 0,0,0, 1, 2, 2, 2
Second Knot Sequence: 0,0,0,0,1,2,2,2,2
B-Spline Coeffs C; ; defined as follows:

i ® 1 2 3 4 5

1 (1,1,0) (1,2, 1) (1,3,2) (1,4, 1) (1,5, 0)
2 (2,1,1) 2,2,2) (2, 3,3) 2,4,2) 2,5, 1)
3 (31,1 3,2,2) 3,3, 3) 3, 4,2) 3,5,1)
4 (4,1,0) (4,2,1) 4,3,2) 4,4, 1) (4,5, 0)

All weights are set equal to 1.

Surface #2 Defining Data
Four power basis polynomial patches each of the form

2 3
F(s, t) = 601 é G, s't wheresand tare local parameters defined for each

i=0 j=0
patch. The global parametersare O£ u £ 2 and 0 £ v £ 2 with suitable restrictions on
each patch.
Patch # (1, 1) Global Parameters O£ u<1,0£v<1
Local Parameterss=u,t=v
Coo = (1, 1, O) C01 = (O, 3, 3) Coz = (O, -1.5, '15) Cog = (O, .5, 0)
C10=(20,2) C11=(0,0,0) C12,=(0,0,0) C13=(0,0,0)

CZO = (_'51 0! -1) CZl = (Oa Oa O) CZZ = (Oa Oa O) C23 = (Oa Oa O)

M 7AA= I\~ \AIN ~AAAI=7=7A 1A A

Patch # (1, 2) Global Parameters O£ u<1,1£VE?2

Local Parameterss=u,t=v-1

Coo = (1, 3, 15) C01 = (O, 1.5, 0)

Coz = (O, O, '15) Cog = (O, .5, 0)

C10=(20,2) C11=(0,0,0) C12,=(0,0,0) C13=(0,0,0)
CZO = (_'51 0! -1) CZl = (Oa Oa O) CZZ = (Oa Oa O) C23 = (Oa Oa O)
Patch # (2, 1) Global Parameters LEUE£ 2, 0£v<1

Local Parameterss=u-1,t=v

Coo = (25, 1, l) CO]_ = (O, 3, 3)

C02 = (O, -1.5, '15) C03 = (O, .5, 0)

Ci=(1,0,0) C11=(0,0,0) C12,=(0,0,0) C13=(0,0,0)
C20 = (51 01 -1) C21 = (Oa Oa O) C22 = (Oa O’ O) C23 = (Oa Oa O)
Patch # (2, 2) Global Parameters 1EUE 2, 1EVE 2

Local Parameterss=u-1,t=v-1

Coo = (25, 3, 25) C01 = (O, 1.5, 0)

C]_() = (l, 0, O) Cll = (O, 0, O)
C20 = (5, 0, -1) Cy= (O, 0, O)

Surface #3 Defining Data

C02 = (O, 0, '15) C03 = (O, .9, 0)

C12=1(0,0,0)
C22 = (O, O, O)

C13=1(0,0,0)
C23 = (O, O, O)

This surface is obtained from #2 by applying the appropriate conversion
algorithm. Note that it differs from Surface #1 in that there is one less knot value in the
second parameter and thus there are different control points.

Degree in 1% Parameter = 2
Degree in 2" Parameter = 3
First Knot Sequence: 0,0,0, 1, 2, 2, 2
Second Knot Sequence: 0,0, 0,0, 2,2, 2,2
(Note that the knot value 1 has been removed because the function is C* continuous there.)

B-Spline Coeffs C;; defined as follows:

i ® 1

1 (1,1,0)
2 (2,11
3 (3,11
4 (41,0

N 7AA= I\~ VAN AAA I=7=7A 1A N

2
(1,3,2)
2,3,3)
(3,3, 3)
(4,3,2)

(1,3,2)
2,3,3)
(3,3, 3)
(4,3,2)

(1,5, 0)
2,5, 1)
(3,5, 1)
(4,5, 0)

40 GENERAL METHODOLOGY

In this section we present an overview of the mathematical conversion algorithms used.
We discuss the simpler non-rational case first.

A. B-Spline to Parametric Spline

To obtain the power basis coefficients, we evaluate all derivatives from the right at
the appropriate knot values and divide by the appropriate factorials. In the case of
surfaces, we take the appropriate mixed partial derivatives.

B. Parametric Spline to B-Spline
The following steps outline the distinct methods we have used to convert curves
and surfaces. The interested user may want to experiment with different approaches.

1. Curves

Step 1:

Left and right derivatives of all orders are taken at each break point to
determine the level of continuity.

Step 2:
Using this continuity information, a knot sequence with appropriate

multiplicities is constructed.

Step 3:
Using this knot sequence, the deBoor-Fix algorithm (see reference [2]) is

applied to obtain the B-spline coefficients.

2. Surfaces

Step 1:

A knot sequence of maximum multiplicity (i.e., degree + 1) is constructed
in each parameter.

Step 2:
The tensor product version of the deBoor-Fix algorithm is applied to

obtain the B-spline coefficients for the surface. Because we imposed maximum
multiplicity in the knot sequence, at this stage the surface is actually piecewise
Bezier.

Step 3:
We attempt to remove as many knots as possible by reversing the process

described in Boehm’s paper, [1].

N 7AA= N~ VAN AAA I=7=7A 1A N

C. Extensions to the Rational Case
The general approach is depicted by the following diagram:

B-spline = %% %% %% %1% % Y2 ¥a® Parametric Spline

Rational = -------------- - oo - ® Rational Parametric
B-Spline Spline

The mappings between the (non-rational) B-spline and the parametric spline are
performed as described in sections A and B above. This is where the bulk of the mathematical
manipulations appear.

However, the initial input and final output are assumed to be rational curve or surface
entities. Therefore, we have provided procedures to map a rational entity to and from the
corresponding non-rational entity in homogeneous form. See the code for details.

D. Determination of Smoothness
The method we have used to convert between power basis spline and B-spline curves
(but not surfaces) follows that described in deBoor, [2].

On page 121 of [2], deBoor points out that it is more difficult to convert from power
basis to B-spline because the power basis representation contains no explicit information about
the smoothness of the function at the breakpoints. As we noted above, this smoothness
information is required to determine the (minimal) knot multiplicities for the B-spline
representation.

Given an input power basis spline curve from an IGES file, parameter #2 in the parameter
data section specifies the degree of derivative continuity with respect to arc length. However, we
cannot use this parameter to determine minimal knot multiplicities for the following reason: A
parametric spline curve can be k times continuously differentiable with respect to arc length (we
denote this by G¥; G for geometric continuity) but may be less than k times continuously
differentiable with respect to the parameter value.

Therefore, to determine the degree of derivative continuity, we check to see whether the
left derivatives and right derivatives agree, to within a suitable tolerance. The tolerance we use
has been determined in a rather ad hoc manner as a function of the machine epsilon, as well as the
magnitude and the order of the derivatives in question. The interested user may wish to
experiment with the method of calculating tolerances.

N 7AA= I\~ VAN AAA[=7=7A 1A A

It is sometimes useful to represent a B-spline curve or surface using additional knot
values, or having greater multiplicity at an existing knot value. Therefore, we have provided
*add-knot” procedures following the algorithm given by Boehm in [1].

N 7AA= N~ VAN ~AAA I=7=7A 1A

As we mentioned earlier, the method we have used to convert from power basis to
B-spline surfaces involves first constructing the corresponding B-spline surface having maximal
knot multiplicity and then trying to remove as many knots as possible in each parameter value.
The interested user may wish to try the same method for the curve case.

When we try to remove knots from a B-spline curve or surface we once again run into a
tolerancing problem. The problem arises at the point in the reverse Boehm algorithm when a
certain B-spline coefficient can be expressed in two different ways. If these two values agree (to
within tolerance) we go ahead and remove the knot. As with our approach to continuity
determination, the choice of tolerance is made in a rather ad hoc manner, and the interested user
may wish to experiment with other approaches.

N 7AA= N~ VAN AAA I=7=7A 1A N~

5.0 TESTING

As we mentioned earlier, we have provided Pascal procedures to test the conversion
algorithms. There are basically two kinds of tests we use.

A. Evaluation and Comparison:

The curve or surface is evaluated over a uniformly spaced array of parameter
values. Evaluation is performed independently using both the rational parametric spline
and rational B-spline representations. The number of evaluation points is specified by
the user. The maximum difference, as well as the maximum and minimum norms for each
representation are written out.

B. Repeated Conversions:

The input entity is converted back and forth between rational parametric spline
and rational B-spline representations. The number of pairs of evaluations is specified by
the user. The last set of coefficients generated is compared with the initial set, and the
maximum differences (in the numerator and denominator) are written out.

C. Examples:

When we applied the tests outlined above to some curves and surfaces related to
the examples presented in Section A, we obtained the following results using the double
precision on the IBM 4341.

ENTITY
ERROR

Quarter Circle
Centered at Origin

Quiarter Circle
Translated Slightly

Conic Obtained by
Perturbing Quarter
Circle Coefficients

Six-Segment
Spline Curve

Four-Patch Surface

N 7AA= I\~ VAN AAA I=7=7A 1A=

MAXIMUM ERROR AFTER

100 EVALUATIONS

2.1 x10"

4.4 x 10"

49x10"

1.1x 10"

1.3x10"

MAXIMUM

AFTER 100 PAIRS

OF CONVERSIONS

0.0

2.2x 10"

48x10"

6.4x 10"

7.0 x 10*

6.0 IMPLEMENTATION CONSIDERATIONS

The conversion algorithms were implemented on an IBM 4341 using VM/CMS. The
language chosen was Pascal/VS Release 2.1. We found Pascal to be useful because the language
enables us to readily define complex data structures (such as rational B-spline surface) and
because it provides a rich supply of control structures. Users may either invoke all or portions
of the code directly, tailor it to their needs, or simply use it as a reference for the ideas it
contains.

The user should be aware of the following features of this implementation.

A. No Pointers.

We have not used dynamic variables at all in this implementation, because we felt
that having lots of pointers would make the code harder to read and make it difficult to
convert to a language such as FORTRAN. On the other hand, not having dynamic
variables meant that we had to hard code in specific upper limits such as maximum knot
sequence size and maximum dimension of the coefficients.

B. No Indefinite Array Size.

Some versions of Pascal allow the user to specify an indefinite array size in the
type of a variable used as a parameter in a procedure. For instance, one could say
“PROCEDURE TEST(X:ARRAY[INTEGER] OF REAL);”. However, Pascal/VS does
not have this feature.

C. Double Precision.

Those variables that are of Pascal/\VVS type REAL would be called “double
precision” or REAL * 8 in other implementations. That is, variables of type REAL
occupy 8 bytes of memory, and double precision floating point arithmetic is used.

D. No Square Brackets for Arrays.

Most Pascal books and manuals we have seen use square brackets, ‘[’ and ‘]” in
the declaration of arrays. However, the 1/O character set available to us on the 4341 did
not include square brackets. Therefore, for array declarations we used ‘(’and ‘)’ wherever
brackets are called for.

E. Control Structures.

We use the standard Pascal control structures and do not use any “go to”
statements. However, in several places we use the non-standard “leave” statement to
cause an immediate, unconditional exit from a loop. Such use of “leave” statements can be
reformulated, if necessary, in terms of “go to” statements.

N 7AA= N VAN AAA I=7=7A 1A N

F. Input/Output.
In this implementation all input is from the terminal, using logical file name

“INPUT”. There are three output files with logical file names “OUTPUT”, “DEBUG”,
and “REPORT”. These refer, respectively, to terminal output, and the files named
“PPBSPLN DEBUG” and “PPBSPLN REPORT”. The functions “TERMIN”,
“TERMOUT” and “REWRITE” are used to prepare the above files for input or output.
Standard output information is written to the “REPORT” file. If the global variable
“IDEBUG” is set to 1,then additional information could be written to the “DEBUG” file
by adding suitable statements to the code.

If the user wishes to implement this code on another system, he should probably
be aware that file-handling conventions will probably differ.

G. Other Non-Standard Features.
The only other non-standard features in the code are the following:
1. %INCLUDE CMS - enables CMS (operating system) commands to be
invoked from the program.
2. % PAGE - causes the following lines of the listing file generated by the
compiler from source code to start on a new page.
3. CMS(‘CLRSCRN’,RETURN-CODE) - clears the screen.

N 7AA= N~ VAN AAA I=7=7A AN

7.0 SUMMARY OF PASCAL PROCEDURES USED

We have grouped the Pascal procedures and functions into a number of categories. A
brief description of each procedure follows the list of categories below. More detailed
documentation appears in the code itself.

Categories
VECTOR OPERATIONS

MATHEMATICAL UTILITIES
CREATE FRACTIONAL PARTS
INPUT/OUTPUT
INTERVAL FINDING
EVALUATION
KNOT FINDING
KNOT MANIPULATION
CONVERSION BETWEEN LIKE ENTITIES
CONVERSION BETWEEN UNLIKE ENTITIES
TEST UTILITIES
TEST DRIVERS

Procedures and Functions by Category

CATEGORY: VECTOR OPERATIONS
Since the B-spline and power-basis spline coefficients and function values are arbitrary
dimensional vectors, we have provided the following procedures and functions.

WRITEVEC : Writes the value of a vector to a file

SUM : Finds the sum of two vectors

DIFFERENCE: Finds the difference of two vectors

NORM : Finds the Euclidean norm of a vector

DIST : Finds the Euclidean distance between two vectors
PRODUCT Finds the product of a scalar and a vector
QUOTIENT : Finds the quotient of a vector and a scalar
ZEROVEC Creates the zero vector of a given dimension
PROJECT Projects a vector onto one of one less dimension
APPEND : Appends a scalar to a vector to form a new vector

CATEGORY: MATHEMATICAL UTILITIES
The following utilities perform various mathematical tasks which were not available as
system routines.

FINDEPS : Finds an approximation to the machine epsilon

N 7AA= I\~ VAN AAA I=7=7A AN

SYMMETRIC: Computes values of the symmetric functions
FACTORIAL : Computes the factorial function
POWER : Raises an integer to a non-negative integral power

CATEGORY: CREATE FRACTIONAL PARTS

For convenience in the parametric evaluation of rational B-spline and power basis curves
and surfaces separate numerator and denominator fields are created by these procedures and
added to the appropriate record.

RP_FRACTION . Create numerator and denominator for a rational polynomial curve
RPSURF_FRACTION: Create numerator and denominator for a rational polynomial surface
RBS_FRACTION . Create numerator and denominator for a rational B-spline curve

RBSURF_FRACTION: Create numerator and denominator for a rational B-spline surface

CATEGORY: INPUT/QUTPUT

These procedures enable the user to read in or write out the various entities of interest.
The interested user may wish to make enhancements to them such as being able to save entities
by name, read from a file, etc.

READ_KNOTS : Prompt the user for a knot sequence of the
appropriate length and check that it is
nondecreasing.

READ_RATIONAL_BSPLINE : Prompt the user and read in a rational B-spline
curve.

WRITE_RBSURF : Write the defining data for a rational B-spline
surface to a designated output file.

WRITE_RBS : Write the defining data for a rational B-spline curve
to a designated output file.

READ_RATIONAL_PP : Prompt the user and read in a rational piecewise
polynomial curve.

READ_RPPSURF : Prompt the user and read in a rational piecewise
polynomial surface.

WRITE_RPSURF : Write the defining data for a rational piecewise
polynomial surface to a designated output file.

WRITE_RPP : Write the defining data for a rational piecewise

polynomial curve to a designated output file.

CATEGORY: INTERVAL FINDING
In order to evaluate piecewise polynomial or B-spline curves or surfaces, we need to find
the indices of the intervals of the given parameter values.

BRACKET : Given a parameter and a set of indexed break points, find an index

M 7AA= I\~ VAN ~AAA I=7=7AIAA

so that the corresponding break points bracket the parameter.
KNOT_INTERVAL : Given a parameter and a set of indexed knots, find an index so that
the corresponding knots bracket the parameter.

N 7AA= N VAN AAA I=7=7A AN

CATEGORY: EVALUATION
Perform parametric evaluation of the value and, in some cases, derivatives of a piecewise
polynomial or B-spline curve or surface. Separate routines are provided for the rational case.

LEEVAL : Evaluates the values and derivatives of a one-span vector-
valued B-spline curve using an algorithm of E. Lee [3].

HORNER : Uses Horner’s method to evaluate a polynomial with vector
coefficients.

FORMAL_DERIVATIVE Finds, but does not evaluate, the polynomial which is the
derivative of a given polynomial.

EVAL _POLY : Evaluates a vector-valued polynomial curve and its
derivatives at a given parameter value.

EVAL PSURF : Evaluates a vector-valued polynomial surface and its
derivatives at a given pair of parameter values.

EVAL_PPSURF : Evaluates a vector-valued piecewise polynomial surface
and its derivatives at a given pair of parameter values.

EVAL_RPPSURF : Evaluates a vector-valued rational piecewise
polynomial surface at a given pair of parameter values.

EVAL PP : Evaluates a vector-valued piecewise polynomial curve and
its derivatives at a given parameter value.

EVAL_RPP : Evaluates a vector-valued rational piecewise polynomial
curve at a given parameter value.

KNOTEVAL : Finds the left and right derivatives of a piecewise
polynomial curve at a breakpoint.

EVAL_BSPLINE : Evaluates a B-spline curve and its derivatives at a given
parameter.

EVAL_RBS : Evaluates a rational B-spline curve at a given parameter.

EVAL_BSURF : Evaluates a B-spline surface and its derivatives at a
given pair of parameters.

EVAL_RBSURF : Evaluates a rational B-spline surface at a given pair of

parameters.

N 7AA= I\ VAN AAA I=7=7A AN

CATEGORY: KNOT FINDING

This set of procedures is used to determine the location and multiplicities of knot values
for B-spline curves and surfaces that are converted from piecewise power basis representations.
The underlying rule is that the knot multiplicity is equal to the degree minus the level of
derivative continuity. Knots of full multiplicity (degree plus one) are placed at the start and end
points.

DETERMINE_CONTINUITY : Find the level of derivative continuity at each
breakpoint of a piecewise polynomial curve, and use
this information to determine knot multiplicities.

FIND_KNOTS : Using the information from procedure
DETERMINE_CONTINUITY, build the knot
sequence for a B-spline curve.

FIND_KNOTS2 : For a piecewise polynomial surface, build two knot
sequences of maximal multiplicity.
FIND DISTINCT_KNOTS : Given a knot sequence, find the distinct knots.

These will become the breakpoints of the
corresponding piecewise polynomial.

CATEGORY: KNOT MANIPULATION

Given a B-spline curve or surface, one can always add more knots. This will result in a
curve or surface which is parametrically identical to the original, but which has a larger (and
partially different) set of B-spline coefficients. Conversely, one can sometimes, but not always,
remove a knot without changing the parameterization of the curve or surface.

ADD_KNOT : Add a knot to a B-spline curve.

ADD_SURF _KNOT : Add a knot to a B-spline surface.

REMOVE_KNOT : Try to remove a knot from a B-spline curve.

REMOVE_SURF_KNOT : Try to remove a knot from a B-spline surface.

REMOVE_ALL_SURF_KNOTS : Remove as many knots as possible from a B-spline
surface.

CATEGORY: CONVERSION BETWEEN LIKE ENTITIES
The purpose here is to convert to and from rational entities and the corresponding non-
rational entity of one dimension higher.

RPOLY_TO_POLY : Rational polynomial curve to polynomial curve.

PP_TO_RPP : Piecewise polynomial curve to rational piecewise
polynomial curve.

RPP_TO_PP : Rational piecewise polynomial curve to piecewise

polynomial curve.
BSPLINE_TO_RBSPLINE : B-spline curve to rational B-spline curve.

N 7AA= I\~ VAN AAA [=7=7A 1A A

RBSPLINE_TO_BSPLINE
PSURF_TO_RPSURF
PPSURF_TO_RPPSURF

RPPSURF_TO_PPSURF

BSURF_TO_RBSURF
RBSURF_TO_BSURF

Rational B-spline curve to B-spline curve.
Polynomial surface to rational polynomial surface.
Piecewise polynomial surface to rational piecewise
polynomial surface.

Rational piecewise polynomial surface to piecewise
polynomial surface.

B-spline surface to rational B-spline surface.
Rational B-spline surface to B-spline surface.

CATEGORY: CONVERSION BETWEEN UNLIKE ENTITIES

This category contains the most important algorithms in the whole package, because they
convert between power basis curves and surfaces and the corresponding B-spline curves and

surfaces.

DEBOOR_FIX

DEBOOR_FIX2

PP_TO_BSPLINE
BSPLINE_TO_PP
RPP_TO_RBSPLINE
RBSPLINE_TO_RPP
PPSURF_TO_BSURF
RPPSURF_TO_RBSURF
BSURF_TO_PPSURF

RBSURF_TO_RPPSURF

CATEGORY: TEST UTILITIES

Given a piecewise polynomial curve and a knot sequence,
find the corresponding B-spline coefficients using a result
of deBoor and Fix described in reference [2].

Given a piecewise polynomial surface and two knot
sequences, find the corresponding B-spline coefficients.
This is the tensor product version of DEBOOR_FIX.
Convert a piecewise polynomial curve to a B-spline curve.
Convert a B-spline curve to a piecewise polynomial curve.
Convert a rational piecewise polynomial curve to a rational
B-spline curve.

Convert a rational B-spline curve to a rational piecewise
polynomial curve.

Convert a piecewise polynomial surface to a B-spline
surface.

Convert a rational piecewise polynomial surface to a
rational B-spline surface.

Convert a B-spline surface to a piecewise polynomial
surface.

Convert a rational B-spline surface to a rational piecewise
polynomial surface.

These utilities enable the user to test the results of converting between the power basis
representation and the corresponding B-spline representation of a curve or surface.

C_EVAL_AND_COMPARE

curve and a

M 7AA= I\~ VAN ~AAA I=7=7A A

Compare a given rational piecewise polynomial

rational B-spline curve by evaluating both of them at a

RPP_COMPARE
RBS_COMPARE
RPPSURF_COMPARE
RBSURF_COMPARE

S_EVAL_AND COMPARE:

CATEGORY: TEST DRIVERS

designated number of points.

Find the maximum difference in coefficients between two
rational piecewise polynomial curves.

Find the maximum difference in coefficients between two
rational B-spline curves.

Find the maximum difference in coefficients between two
rational piecewise polynomial surfaces.

Find the maximum difference in coefficients between two
rational B-spline surfaces.

Compare a given rational piecewise polynomial surface and
a rational B-spline surface by evaluating both at a
designated number of points.

One of these procedures is invoked by the main program in response to the user’s input
regarding what kind of entity he wishes to start with. They obtain the appropriate input, see
that it is converted to the other form, perform tests as requested by the user, and write out

results as they occur.

START WITH_RPP_CURVE
START _WITH_RBS_CURVE
START_WITH_RPP_SURFACE
START_WITH_RBS_SURFACE

MAIN PROGRAM

N 7AA= N VAN AAA I=7=7A AN

Invoked if the user indicated that he wished to start
with a rational piecewise polynomial curve.
Invoked if the user indicated that he wished to start
with a rational B-spline curve.

Invoked if the user indicated that he wished to start
with a rational piecewise polynomial surface.
Invoked if the user indicated that he wished to start
with a rational B-spline surface.

Opens all files, prompts the user for what type of
curve or surface he wants to start with, and calls the
appropriate test driver procedure.

8.0 REFERENCES

1. Boehm, W. (1980), Inserting new knots into B-spline curves, Computer-aided Design
12, 199-201.

2. deBoor, C. (1978), A Practical Guide to Splines, Springer, Berlin.

3. Lee, E. (1982), A simplified B-spline computation routine, Computing 29, 365-373.
4. The Initial Graphics Exchange Specification (IGES), Version 2.0, Bradford Smith,

Kalman G. Brauner, Philip Kennicott, Michael Liewald, Joan Wellington, NBSIR
82-2631.

N AA= I\~ VAN AAA [=7=7A 1N

